arXiv:2411.00304v1 Announce Type: cross
Abstract: In recent times, Vision-Language Models (VLMs) have been trained under two predominant paradigms. Generative training has enabled Multimodal Large Language Models (MLLMs) to tackle various complex tasks, yet issues such as hallucinations and weak object discrimination persist. Discriminative training, exemplified by models like CLIP, excels in zero-shot image-text classification and retrieval, yet struggles with complex scenarios requiring fine-grained semantic differentiation. This paper addresses these challenges by proposing a unified approach that integrates the strengths of both paradigms. Considering interleaved image-text sequences as the general format of input samples, we introduce a structure-induced training strategy that imposes semantic relationships between input samples and the MLLM’s hidden state. This approach enhances the MLLM’s ability to capture global semantics and distinguish fine-grained semantics. By leveraging dynamic sequence alignment within the Dynamic Time Warping framework and integrating a novel kernel for fine-grained semantic differentiation, our method effectively balances generative and discriminative tasks. Extensive experiments demonstrate the effectiveness of our approach, achieving state-of-the-art results in multiple generative tasks, especially those requiring cognitive and discrimination abilities. Additionally, our method surpasses discriminative benchmarks in interleaved and fine-grained retrieval tasks. By employing a retrieval-augmented generation strategy, our approach further enhances performance in some generative tasks within one model, offering a promising direction for future research in vision-language modeling.

Integration of Generative and Discriminative Approaches in Vision-Language Models

Over the past few years, Vision-Language Models (VLMs) have made significant progress in understanding and generating text based on visual input. However, two predominant paradigms have emerged in training these models, each with its own limitations. Generative training has allowed Multimodal Large Language Models (MLLMs) to tackle various complex tasks, but issues like hallucinations and weak object discrimination still persist. On the other hand, discriminative training, exemplified by models like CLIP, performs well in zero-shot image-text classification and retrieval but struggles with more complex scenarios that require fine-grained semantic differentiation.

This paper proposes a unified approach that integrates the strengths of both paradigms to tackle these challenges. The authors consider interleaved image-text sequences as the general format of input samples and introduce a structure-induced training strategy that imposes semantic relationships between these input samples and the MLLM’s hidden state. By doing so, they enhance the model’s ability to capture global semantics and distinguish fine-grained semantics.

One interesting aspect of this approach is the use of dynamic sequence alignment within the Dynamic Time Warping framework. This helps align the image and text sequences, allowing for better understanding of the relationships between them. Additionally, the authors propose a novel kernel for fine-grained semantic differentiation, further enhancing the model’s discriminative abilities.

The multi-disciplinary nature of this work is evident in its connections to various fields. In the wider field of multimedia information systems, this work contributes by providing a more effective way of combining visual and textual information. By addressing the limitations of generative and discriminative models, the proposed approach opens up new possibilities for applications in animations, artificial reality, augmented reality, and virtual realities.

For example, in animations, this approach could improve the generation of text captions or dialogue based on visual scenes. It could also enhance the understanding of complex scenarios in virtual reality environments, allowing for more immersive experiences. Furthermore, in augmented reality applications, the integration of generative and discriminative approaches could enable better object recognition and understanding of the surrounding environment.

The experiments conducted by the authors demonstrate the effectiveness of their approach, achieving state-of-the-art results in multiple generative tasks, particularly those requiring cognitive and discrimination abilities. Additionally, their method surpasses discriminative benchmarks in interleaved and fine-grained retrieval tasks.

By employing a retrieval-augmented generation strategy, the authors further enhance the performance of generative tasks within one model, offering a promising direction for future research in vision-language modeling. This integration of retrieval and generation could lead to breakthroughs in areas such as interactive storytelling, where the model can generate text based on retrieved information from a large knowledge base.

In conclusion, the unified approach proposed in this paper addresses the challenges of generative and discriminative training in Vision-Language Models by integrating the strengths of both paradigms. The multi-disciplinary nature of this work allows it to have implications in the broader field of multimedia information systems and its related domains, such as animations, artificial reality, augmented reality, and virtual realities. The experiments presented demonstrate the effectiveness of the proposed approach, and the retrieval-augmented generation strategy opens up exciting possibilities for future research in vision-language modeling.

Read the original article