This article presents an overview of the concepts of Artificial Intelligence (AI), Multi-Agent-Systems (MAS), Coordination, Intelligent Robotics, and Deep Reinforcement Learning (DRL) and discusses how these concepts can be effectively utilized to create efficient robot skills and coordinated robotic teams. One specific application discussed in the article is robotic soccer, which showcases the potential of AI and DRL in enabling robots to perform complex actions and tasks.
The article also introduces the RoboCup initiative, with a focus on the Humanoid Simulation 3D league. This competition presents new challenges and provides a platform for researchers and developers to showcase their advancements in robotic soccer.
In addition, the author shares their own research developed throughout the last 22 years as part of the FCPortugal project. This includes the development of coordination methodologies such as Strategy, Tactics, Formations, Setplays, and Coaching Languages, along with the use of Machine Learning to optimize these concepts. The paper also highlights novel stochastic search algorithms for black box optimization and their application in various domains, including omnidirectional walking skills and robotic multi-agent learning.
Furthermore, the article briefly explores new applications utilizing variations of the Proximal Policy Optimization algorithm and advanced modeling for robot and multi-robot learning. The author emphasizes their team’s achievements, including more than 100 published papers, several competition wins in different leagues, and numerous scientific awards at RoboCup. Notably, the FCPortugal project achieved a remarkable victory in the Simulation 3D League at RoboCup 2022, scoring 84 goals while only conceding 2.
The insights presented in this article demonstrate the potential of AI and DRL in enhancing robot skills and enabling coordinated actions within robotic teams. By leveraging these technologies, researchers and developers can continue pushing the boundaries of what robots are capable of, ultimately leading to advancements in various domains, including robotic soccer.